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SUMMARY

The problem of pressure fluctuations at a rigid wall under a turbulent
boundary layer has attracted much attention in the past decade, At low
Mach numbers the theory is well established from the work of Kralohnan
and L[lley, and reasonable agreement is obtained with the experiments of
Wlllmarth, Hodgson and others. At high Mach numbers, measurements exist
due to the work of Kistler and Chen but so far no theory Is available,
apart from that due to Phillips, which is however related to the noise
radiated from supersonic turbulent shear flows.

This Report reviews the theory of wall pressure fluctuations in
incompressible flow, and shows how the character of the pressure fluo-
tuations changes in passing from the flow to the wall, Attention in
drawn to the more important Interactions giving rise, to the nressure
fluctuations, as well as.to the region of the boundary layer mainly res-
ponsible for the wall pressure fluctuations,

The work is extended to include the effects of compressibility. It is
found that an analysis- similar to that of Phillips in appropriate, although,
unlike the latter work, this new treatment is not restricted to the case
of very high supersonic Mach numbers. The analysis makes use of the ratio

a5/u, as a large parameter, where a. is the speed of sound at the wall
and Ur i. the shear velocity, This is certainly true for a very wide
range of Mach numbers provided that the wall is not subjected to large
rates of heat transfer, It Is shown thaL the well pressure fluctuations
are now the result of fluctuations in both the vorticity and sound modes.
At high Mach numbers, the latter contribution is in the form of eddy Mach
waves, as suggested by Phillips. On making certain assumptions regarding
the dominant internations, estimates of the magnitude and spectrum of the
wall pressure fluctuations are mR(ae which show similar trends to the
measurements of Kistler and Chun,
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SOMMAIRE

Le Probl~me des fluctuations de. pression une parol nugde sousB une
couohe limitrophe turbulente a 0oulavef une grande attention durant cette
dornilre dicAde. A des nonibres do Maoh pou .'1eveos, Is the'orie eat bien
dtgkblio d'apr~s lea travaux do. Krmleluinn "L. Lilley, et l' on obtiont uno
concordance raisonnable avec lea exp~riences de WIllmarth, Hodgson at
d' autres. Four does nombreo do Mach O'evs de. momuras existent grace
mux travaux doKistlor at do Chen maim, Jusqull, present, on no dispose
d'aucune Whorts, I part calle qua Ilon doit k Phillips, qul oat touts-
fain Oiparontie eu bruit Smanant de'ceoulemonts do clealilement turbulents
supersoonques.

Co rapport passe on revue Is thorio don fluctuations do pression 'a
don parole dana un Annulamenft innnmpreesible et mantra conmment la natura
dam fluctuations do premmion aso modifieoan peasnant do 114coulomeht I 1.
parci, on attire l'ettention cur Ion interactions plum importantoa'qui
donnent lieu aux fluctuations do prancian, ainai qu&a Ia rigion do Is
coucho limitropho, qul ceucent principalomont lea fluctuation. do proomion
eux pairole,

on a diargi lea trvaeux pour anglober Ion effete do Ia comproaxibilit6.
On consateo qu'une anslyse eleulaire a cello do Phillips act aippropri~s,
bion quo, contraiei'mentA cam darniers travaux, ao nouveau treituinont no
colt pam iimitg au cu do nombrec do Mach hypaeroniquea trim 4iovim,
11 analyse mo sart du rapport a /u1. comma grand parmitro oa aN
repricento is viteamo dui eon i lta parol, at u~. reprimento Ia vitacco do
olceillamont. Cola eat aertainoment vrai pour una trim grands plago do
nombros do Mach, A In condition quo Is perof no soit pean oumumo I do
grandam vitammam do trmnafert do chalour. On mantro quo 1e. fluctuations
do prommion sux parois cont nieintonmnt le rdaultat do fluctuations tent
dens i14tat do tourbillutie quo dane Iam modalitgm do mon. Pour do grand.
nombram do Mach, outte derniAre contribution oat scum formsa d'ondam Mach
do tourbillons, commae avanad par Phillips. Rn faisant cartainam supposi-
tions conco rnant lea interactions dominanta., on feit doe hveluations do
I& grandeur at du spectra doe fluctuations do proeslion eux parole qui
rdvh1ont des tendazicom mimilaires aux mesuree do Kistler et do Chien.
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NOTATION

K /a/sw "t

a speed of sound

A a(1,t) source function.

ELI amplitude of covarianoe

Of skin friction coefficient

F'function (Eqn.117)

fe functions (Eqn.80)

00 Green function for flow without boundaries

SGi Green function for image flow

h(O) coeffioient'in approximation to mean shear

H(y) source function (Eqn.48)

J(x) function tabulated by 0oodwin and staten

two-dimesiuional wave number

scales of turbulence

L function (Eqn.83),

P pressure covariance

p pressure

(see Ecn.47),

spatial separation

R Reynolds number

Rp 2 pressure - u. velocity covariance

8 independent variable

t time

T temperature

vi



Ts sub-layer temperature (Eqn.74)

mean flow velocity

X velocity (turbulent)

UO convection velocity

* X(y),X(O) functions (qn.80)

* y •independent variable

dzg Fourier coefficient of u.

7• delay time; mean shear (dU,/dx,)

7,. wall shear streas

Sw frequency

a- •inverse length scale of turbulence

a function of y

function of y coefficient in approximation to mean shear

a •.function of y

function of y

V ratio of specific heats

dy Fourier coefficient

S boundary layer thickness

displacement thickness

modified Fourier coefficient (pressure) u (&/a,)dC)

7 independent variable

K2 wave number

X f/uT

/ viscosity

dco Fourier coefficient of pressure

p denslty

vii



0 angle

H(k-C,)) spectrum function (pressure)

U.r 7

022 spectrum function (velocity component u%)

0(s)' source function

dependent variable (Eqn.65)

Subscripta

w denotes wall value

denotes value external to the boundary layer

o incompressible value

iJ tensor notation

streamwise direction

X2 normal to the wall

X3 transverse direction

bar denotes an in'compressible value unless otherwise stated
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WALL PRESSURE FLUCTUATIONS UNDER TURBULENT BOUNDARY LAYERS
AT SUBSONIC AND SUPERSONIC SPEEDS

G.M. Lilley*

1. INTRODUCTION

The work of Heisenbergl, Obukhov2 and Batchelor 3 ha shown that in isotropic turbu-

lence, the root mean square fluctuating pressure is given by

where ul is the mean square value of any fluctuating component of theaturbulent
velocity. Ubero±& has shown that a relation of thin fom exists in grid turbulence,
but the constant in Equation (1) was approximately 0.,5 over a wide range of Reynolds
numbers,

The first attempt to calculate the fluctuating pressure field in a turbulent shear
flow was made by Kralchnan' who found that at the wall (subscript w)

4( 2 to 12 (2)
Trw

where 7w in the local wall mean shear stress.

Experiments in pipe flow by Willmarth%7 showed that

ýe 0. 00 pul (9

and that the pressure field was convected past the wall. at an average speed of
0.82 U0 , where UV is the speed of the uniform flow external to the boundary layer.
However, in spite of care to reduce the extraneous noise in the air supply leading to
the pipe, Willmarth was unable to obtain accurate readings of the power spectral
density in the lower frequencies. Other investigators have obtained similar results
but only recently has an attempt been made to check the constant in Kraiohnan'a
formula. (A more complete review of the experimental work on wall pressure fluctuations
will be given in a paper by Hodgeon6 which is to be published shortly).

An additional problem noted by Willmarth was the correction necessary to allow for
the effata nr the finits size of the oressure tranaducer on both the root mean square

and power spectral density measurements. With this correction applied, most of the
available measurements suggest

1.5 to 3 (4)
Tw

LolLege of Aeronautics, Cranfield, Bletchley, Bucks,, Englutd



2

over a moderate range of Reynolds numbers at low Mach numbers, or

=a(R) (5)

where a(R) is a.slowly varying function of Reynolds number at sutriolently nigh
Reynolds numbers.

Recent work by Kistler and Chen 7 has extended the measurements to high Mach numbers
and their work shows that a(R) increases progressively with Mach number, reaching a
value between 5 and 6 at a freestream Mach number of 5, at least for the case of zero
heat transfer. Their results suggest that, at a Mach number of 5, the function a(R)
has nearly reached its asymptotic value for very high Mach numbers.

The work of Kraichnan (loc.cit.) has been reviewed and extended by LilleyO and by
Lilley and Hodgon9'. The latter work showed that the lower estimate of a(R) obtained
by Kraiohnan was more correct, and this work also went some way towards confirming.that
the pressure fluctuations in a turbulent shear flow are dominated by the mean shear.
The calculated spectrum function for the wall pressure fluctuations showed moderate
agreement with the measured spectra at high frequencies, but at lower frequencies, the
calculated fall was not observed in the measurements made in pipes, wind tunnels etc.
The corresponding two-point pressure covariances showed marked differences between
longitudinal and transverse separations, while the area under the longitudinal pressure
covarianoe and the related autocorrelation was exactly zero. In fact, the theory
showed, in agreement with the work of Phillipsie, a vanishing surface integral of the
two-point pressure covarianoe taken over the wall. The differences between theory and
the measurements of Willmarth and others have been investigated by Hodgson6 . He showed
that the ill-defined strong negative loop in both the measured longitudinal pressure
covariance and the autocorrelation, and the non-vanishing transverse pressure covariance
at large separations, were the resuliof extraneous disturbances external to the
boundary layer. (The effects of extraneous disturbances were also known to Willmarth
and are also discussed at some length in the recent work of Willmarth and Wooldridgelt).
The measurements made,'by Hodgson (leo.cit.), on the wing of a glider in flight, which
were free from extranedJs disturbances, confirmed the relation

4R(.- : 2.2 rw (6)

and showed the falling spectrum in the lower frequencies, together with

fP(O;i)dr 0 (7)

where P(OIT) is the autocorrelation of the pressure at the wall. On anplying the
convected hypothesis, which is supported by all the measurements, Hodgson finds that
Equation (7) is equivalent to

- (
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which is an experimental confirmation of Phillips' result.

If we return to the problem of wall pressure fluctuations at supersonic Mach numbers,
we find that no theory exists, apart from the work by Phillips1 2, on the related

problem of sound generation by supersonic turbulent shear layers.

Phillips has shown that the radiated sound arises from eddy Mach waves which are

generated by some wave-numbers of the turbulence In those layers of the shear flow for

which the difference between the mean velocity of the fluid outside and the local eddy
convection velocity is greater than the speed of sound outside the-zone. Phillips does

not include the case of a wall shear flow, although clearly this must present an
analogous problem, and indeed Phillips argues that his model should be qualitatively
correct in this case. However, measurementsby Lauferta of radiated sound from super-

sonic turbulent boundary lasyers are not in good numerical agreement with Phillips'

Lheoury, ilLhujuh ufidoubLedly some adpooot or the phenomenoi decoilbed by Phillips,

such as the production of eddy Mach waves, do exist and have been observed by many
workers. However, as Laufer points out, the experimental Mach numbers may not be high

enough for Phillips' asymptotic theory to be applicable in the range of freestream
Mach numbers up to 5. The more general problem of the sound radiated from shear flows

at supersonic speeds has been treated by Ffowos Williams 1t and Lighthill".

The present paper sete out to extend the theory of pressure fluctuations in turbulent

boundary layers in incompressible flow to that at higher speeds, and to provide a basis
for comparison with the measured results of Kistler and Ohen (loo,oit.), Williams5i
and Willmarth 1 7

.

2. INCOMPRESSIBLE FLOW THEOBV

2.1 The Pressure Covariance

It has been shown by Lilley and Hodgson (loo,oit.) that the pressure at the wall is
dominated by contributions from the turbulence in the inner' region of the boundary

layer, extending up to about 1.681 , where 8, is the boundary layer displacement

thickness, In this region, the typical length and velocity scales of the flow are

o and u. W-f respectively .
PoU'rRpw

Measurements in this region indicate that all except the larger wave numbers of the

turbulence are being convected at a mean speed of near 0.8 U. , and a theory of the

sub-layer of the 'inner' region, based on this hypothesis, Is given by Sternberg".

Hence we might expect that the pressure at the wall is also dominated by eddies having

this convection speed of near 0.8 U, . Since the correlation lengths for the wall

pressure are of the order of a boundary layer thickness, it would seem reasonable to

neglect the rate of growth of the boundary layer in calculations of the wall pressure

fluctuations. We will assume, therefore, that the mean flow field is given by

(u1(xl2),,O] where x, is measured in the direction of the mainstream and x2 is
normal to the wall. If all terms in the equations of motion are made non-dimensional

with respect to u1 and .Ip0/u, , we find
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'u t a ll d U 1d U(( U j - • ) a )
+U- + u-'81 + -i - + (9),'a la dx 2  1 axj x

where t = !Pu
Po

xi Uo

P

U,

UL

Ul N I-
U,

Since the Equation of continuity for the turbulence In Bu i/xix 0 , we find, on
taking the divergence of (9), that the Equation for the pressure$ is

A(Xt) (10)

The two tome contributing to A(x,t) , which defines the velocity field, can be

referred to as the mean shear - turbulence interaction (M-T) and the turbulence-
turbulence interaction (T-T) respectively.

The solution of (10) can be put in the form

uxlf dxldx.. A (x 1 t)E + (11

Trr

* 1ldxidx'0 1 (1,27JJ1 3  ZX2

where the surface integral is taken over the wall at 0 *0 The Green functions
0e nd Oi are given respectively by

*It is incorrect to argue that the second term on the right hand side of (10) is small by com-

varison with the first term, HnWever, Integrals involving A(E,t) are usually dominated by
the (hi - T) termR uiin1AR this tenntr1hoiitnn Is identically zero.



(12)
Ix 0.- xI

where x's * (xi, -xxi) is the 'image' point. Hqwuye', £rcmi the Equation of motion1 2 3

(9), we see that at the wall

-(iS)

-2

since both U, and ul vanish at the wall, and then (11) becomes

4,J d0  J xj x 3( O + A (x ',t)

S1 ii 4a0  (14)

showing that the pressure fluctuations can be determined once the velocity field is
known. The covarianoe between the pressure at any point (x,t) and a random function

q"(x",t), such as the pressure or a component of the turbulent velocity at (x",t), is

therefore given by

p(x,t)q(x",t) - dxj dxldx,'(Qo + Gj) A(x")q"(x")

where the bars indicate time means. Thus in order to determine the pressure covartance

p(x)pp"(x) anywhere In the shear layer we need valuos of

A(x')p,,(x") m 2 U-A(x•) (1u)
S dx 2  V, BX~xIIB

But PIU2 can be determined from (15) by replacing q" by u" so that
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T = dx ldxldxd(G + opt2n'i +u
4 I x 2 x J

" d20 8X2  /B,.o

while PU'j is similarly obtained by replacing q" in (15) by u"u " Hence the
'determination of the pressure covariance formallyr involves the evaluation of integrals

of the form of (15) and ,(17) over the entire flow field. However, this cannot be

performed with any great precision since the second-order velocity correlations are..
incompletely known and little is known of the third-order and fourth-order velocity
correlations. The mean sq~tare of the presqure at the wall, p(O• , said the pressure-

velocity oovariance, p( O)u2(x") are just two particular results which can be. obtained
from the general relations (15) to (17).

On the assumption that the (M - T) and CT - 7) terms are independent, IHodgson (100.
cit.) has shown, on using the best available data for the mean and turbulent velocity
flow fields and making extensive numerical calculations, that the contributions to

from the (M - T) and (T - T) terms are respectively 2.6 and 0.5. This shows that the
contribution of the (T - T) terms to the mean square of the wall pressure is only
4 per cent, and in view of the approximate nature of the calculations can be assumed

Snegligible. The accuracy of the computations leading to the (T - T) contribution to
the wall pressure is Boor due to the many assumptions which must be included ifa
numerical result is to be obtained, (The difference between these calculations and
the measured values is not considered to be of major importance, in view of the fact

that on each occasion a velocity flow field closer to the experimental one was used,

ancvalutel of ow a)nearerttoe 2.2 knwan ob hetained,) d adfuthodrvlct

If we turn next to the evaluation of tepress/u(p-Oe --wlua2)O. we find that the

contribution from the surface integral is negligoble if x" » 1 (Note that in our

notation Xa - pou1 x2 // 0). The contribution from the (M - T) term can be obtained on

choosing a suitable form for fuou (The oontrll.In from the (T - T) term

cannot bfie tioneanding een proximtelyum ince valulae t fi nha have not been measured

e x c e p t f orfrer o s e p ara n ) te is f o n t h a tc t he c o nt f r om t h e ( M - T ) t e rm

gives

p( ,u x '7(x 2) exp t I(x ;')(x'i' + x•' J (lA )

and a comparison with the measurements of Willmarth and Wooldridge
2 s is shown in

4 igures i and 2. Tie ofthe•pir is reasonable, qualitutivof y, e xcea t at large separa-

tions, which is noot coxpnlshi sidce the chosen form for Qt ncglccted the
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contribution from the big eddies. A slightly modified form of (18), together with an

additional term to represent the effect of the big eddies, enables It, to be
Zx1

represented in the form

R zug, , fxn) IXp aw2+x2 + al~xl (2+X

where a Is a function of xff

The evaluation of p-DO can now be attempted by using R 2,, defined by (19).

It can be shown that the contribution from the surface integral can be neglected,
while again it would appear not unreasonable to assume that the (T - T) contribution.
Involving as it does third-ordero ovariances, can be neglected. It is found that

4(PFO_)7) has a value of the order of' 2.0 if the values of f(x:) and a are chosen

Us/,./r, ft +., dxdx3
aprpiaey Th .nerlo hc hsvleo (T1) I lmdi-0)) !LcU (x2ax~ aJ (A (20)

where G(x2) includes both the mean shear distribution and the variation of

across the boundary layer. Tx1

K is the von Kirmdn constant used in defining the mean velocity shear. The con-

"tributions to arise from layers between the wall and x /8, = 2.0, and if we
take 81 = 1610 (corresponding to the value used in one of Wooldridge and WIllmarth's
experiments), this occurs at values of x, up to 3200, which straddles the value of
x2 = 2550 , at which UJ/U, = 0.83 . It must not be assumed, however, that the major

contribution to p(O-5 occurs over a small region of the shear layer. In fact the
contributions are spread diffusely over a fairly large range of x2 as shown also in
the experiments of Willmarth and Wooldridge and in the analysis of Hodgeon. Slightly
different conclusions have been suggested by Corcos 28 recently from an exact numerical
integration of the experimental data of Willmarth and Wooldridge. The result of this

computation gives a value of P(p(-_)) of about 1.2 compared with the value of 2.0

found above. Reasons for this difference are not difficult to trace but it it diffi-
cult to assess which is closer to the true value of the (M - T) contribution to

(F(O--7) Some objections to the use of the Wooldridge and Willmarth data at large

separations in 0hl8 eumputaLiuoi can be made oti the groundS that:

(a) the experimental accuracy is poor:

(b) the use of a high pass filter in these experiments will affect the values of

Bpi 2at large 9eparftlons:



(c) the assumed relation between Rpu and R, , involving 'Taylor's

hypothesis', is not correct for large separations.

(c) is not true for double velocity covariances at large separations and is likely
to be even lees true for the velocity-wall pressure covariannnn measured by Wooldridge
and Wlllmarth.

The extension of this work to Include the evaluation of P2(Xd involves many
difficulties, although formally it can be obtained from (15) to (17)i In view of the
fact that Zp/Ax2 is nearly zero at the wall, together with the result that the major

contribution to p(O) arises fromvaluesof x up to 1.581, leads us to suggest

that p2 is nearly constant, varying at most by a factor of 2 over most of the 'inner,
region. Since~over most of the constant stress layer F is of order unity and

- • I . - i7/pou• is of order 4, we find some confirmation in this suggestion.* An
alternative suggestion by Remenyik and Kovasznay 1 9 is that the fluctuating pressure
falls rapidly outside the 'laminar sub-layer', but this Is not in agreement with our
results. However, the results in Section 3 do show that the major contribution to the
wall pressure comes from layers closer to the wall as the Mach number is increased,
and •t is probably this effect which might have some bearing on the results obtained
by R6emenyik and Kovasznay.

We will now discuss the pressure-velocity product Fii . This term, which vanishes
at the wall, is known to play an important role In the energy transfer across the
boundary layer,'and has roughly a constant value across the entire inner' region of
the boundary, layer outside the viscous layer. Clearly the pressure-velocity covariance

p(x,)u" must have an essentially different form from p(O)u" , since, as we have shown

above, p(O)u"(Ox'0,O) is zero, whereas pu (x 2 ) is clearly finite. In addition,

the surface integral of pu--' taken over a plane parallel with the wall, must vanish
if there is no disturbance outside the boundary layer. The results of Wooldridge'and
Willmarth are in agreement with this boundary condition for p(O)u2

The modifications to ju-' , as the pressure measuring station is moved away from
the wall, can be shown to depend on contribjtions from the surface integral and the
(T - T) term In (17), both of which have been shown to give negligible contributions

to p(O)u , Indeed if Q2,(x,;k) is symmetrical about r, = 0 , the contribution

of the (M - T) term to 55- i is zero, as noted by Corcos20 , and so FE, depends

11a, unwe vi The constant stress lsyer if we nut

9 2u 2 ; pv

S/2{-
and

then if v =1, 1If7)V\1w
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entirely on the surface integral in (l1) together with the contribution from the third-
order velocity covariance. Outside the viscous layer, the dominant contribution to

pu2 arises from the (T - T) terms. This result is made obvious by noting that if
structural similarity exists in the constant stress region of the boundary layer and
outside the viscous layer -

q2U2  2312
= a 3 (R)q 2231

-pu2  a2 R )t1

_ atand so -PU2  q u2 (21)

whfre q-T is the mean square or the turbulent velocity, and a2(R) and a2 (R) are
slowly varying functions of Reynolds number.

2.2 The Structure of the Big Eddies

The work of Townsend 21 and Grant" has suggested that the structure of the big
eddies in a turbulent boundary layer have the form of 'mixing Jets' which erupt near
the surface and spread into the outer regions of the boundary layer.- The available
experimental evidence in support of this hypothesis is scanty, although it is consis-
tent with Grant's own measurements of nine second-order velocity correlations, and the
more recent work of Wooldridge and Willmarth (loc.cit.) in which they report extensive
measurements of wall pressure-velocity covarlanoes. Since the big eddies play such a
vital role in the determination of the pressure at the wall, it is of interest to
discuss thc:work oi the present author, in which an attempt has been made to put the
'mixing jet' hypothesis on a more quantitative basis with results in agreement with
the measurements both of Grant, and Wooldridge and Willmarth. Only the essential
details of this work will be given here. When the rateof turbulent energy production
exceeds its equilibrium level, it.is followed by increased dissipation and an increased
rate of diffusion of turbulent energy both towards and away from the wall. The out-
ward flux of energy can be presented roughly by

U dU d- 6q /2
dx2

where U is the mixing jet velocity and Aq2 /2 is the excess of turbulent energy.
This release of energy from regions near the wall is followed by an energy deficiency,
and so the outward 'mixing jot' must be followed by a return flow towards the siirftr-p.

Such a return flow is also required from considerations of continuity. It might be
expected that the outward 'mixing jets' should have a relatively high turbulent
intensity and a relatively small scale, while the retu rn flow should have a somewhat
lower turbulent intensity and a larger scale. An overall scale of the 'mixing jets',
extending to about a boundary layer thickness, is clearly shown in the measurements
of Wooldridge and Willmarth, as well as those of Grant.
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Since the 'mixing Jet' is essentially a turbulent flow away from the surface, we
might expect the major part of the correlation R2 2 (r1 ,0,O) to be the result of the
relatively simple structure of the big eddy. The results shown in Figure 4 confirm
this. However a fair fit with the remaining correlations measured by Grant could only
be obtained if, in addition to the mixing jets. we superpose larger eddies rotating in
planes parallel with the wall and uncorrelated with the 'mixing jets'. The presence
of these big eddies can be denitaLriiLed in Figure 4, where the separate contributions
from the 'mixing Jets' and the larger scale eddies are given for W,.,(r,.0,0). The
figure also shows the measure of agreement between the model and the measurements but
with a relatively free choice in the values of so many length scales defining the three
part structure of the big eddies, the agreement in many of the examples shown is
probably fortuitous. Briefly the length scales of the eddies have been found to be as
follows:

(i) eddies rotating in planes parallel-with the wall have a scale of order 8
wheýre 9 is the boundary layer thickness, and have a structuro -Imilar to
the simple form suggested by Townsend as being representative of the big
eddies produced at random in the boundary layer;

(ii) the outward 'mixing jet' has a scale of order 8/10

(iii) the scale of the return flow is of order 8/3

(iv) secondary motions in planes parallel to the wall accompanying the 'mixing
jet' have scales of order 8/10

A diagrammatic representation of the big eddy structure is shown in Figure 5.

2.3 The Pressure Spectrum

If we define the three-dimensional Fourier-Stieltjes transforms of P(,, t) and
A(Qt) respectively as

t) dw(x 2;1 ,o (22)

fe"

and A(•,t) fe(k1x,+kx3÷st) dY( x2 ;, )

where k (k 1,k 3 ) is the wave number vector in the (xtx,) plane and oi is the
frequency, then the equation for the Fourier coefficient dw is

d WO_ 2d&ý = d y (

where primes denote differentiation with respecL Lu x, If we amsume that the
disturbance outside the boundary layer Is zero, dc(w) dy(a() = 0 . From the equation
of motion

d-'(O) = dzn(o) (24)

where dz2 is the rourler coerriclent for u.
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Hence the solution to (23), satisfying the boundary condition-f24), is

-d4(O) (kx k )
d'w(x.•, = - + e~k;

2

do'(O) (eki -ekx

2k

kzj 0

2k J

S" "- a1 ekd-/(y)dy (25)

and for the Fourier coefficient of the pressure at the wall

dwI(O) a dy'(O)-( ekYdVy~d (26)
k k 2

If we assume that we can neglect do'i(O) then the pressure spectrum function at the
wall is given by

]J(O;J,,O) 'eokYdy feks dy(y)d*(y + z)dz (27)

where ](O;X,,w) 7j fP(O;4,t)P(O;• + Lt 4- t1)e'r d

-d'(O;; X,,w*(0)J•-,6w) (28)
dkldk ,da

and j (r,,r 3 ) and the asterisk denotes the complex conjugate, The mean square of
the pressure at the wall is

p'(O) = ,ffd'U•dw rI(O;•X,w) (29)
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Since all wave-numbers, apart from the highest, are convected at a constant speed,
U0 , the frequency spectrum can be obtained, relative to co-ordinates fixed in the
wall.' from the integrated wave number spectrum function. Thus

1(O; k,) jfl(0Ojk)dk, 10 - (30)

where .I(6;•) = (O;Xw)dr

A result of the vanishing surface integral of the pressure covariance leads to

M(0:0) 0 (31)

In theme results k and t are dimensionless, and are given by t~he relations

k - k~i

•, PoU'r-11A/o

and Oj = W81l/ur (32)

If A(xt) in (10) Is independent of Reynolds number, then 11(O;kco) should be a
universal function of. k and w. (Hence spectra plotted as functions of wsllu,
say, will not be universal functions).

If we now replace dy(x; ,w) by its (M - T) term only

d^/(x,,,X,) =-21k, du• dz2(x2;t'°J) (33)

and substitute into Equation (27)

iI (0; Xo) 4kje" `kyr(y)dy

'1 f2 (y;ff,w0)dK2

* fe'kceiK2z'-(y + z)dz (34)
-y

where i is the four-dimensional spectrum function, X-= (K1,K9,K,) , K1 -k1
K3 = k, and -r = dU/dx2 ,
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If we assume that

121212 3l + =2e

_ii(Y)47~( + Z) 275 ui +2.

where 12k 2 •lk 2 + 1:2 k

as shown in the Appendix, and

Tu-7 h(O)e"4y 12 y 1 3

wa find

Is-1 + e 2 Ei(-2) + e'" (2) - es2i(1)]
•(0;•,1) ,= •/(k + S) IUo

I 2k~h2(O)(1 + ,2J2).-.(-2kt-.z-w2/r2) (36)

where the tern in square brackets is equal to 0.42 approximately. (The contribution
to l(o;X,eo) from the sub-layer can be shown to be negligible and since the major
contribution Is found to come from layers between. % to 28' , we are Justified. in
putting h(O) as finite). The integration over all frequencies can be performed and
the wave number spectrum is then given by

*0 12k2
T1(0; k) 1 (37)lh2O~'

ir(k + ,) 2

and ;T(O) 1.680h(O)If + 81- (38)

An analysis of the contributions to If(O;X). from different values of y shows
that the larger contributions come from layers of order b, from the wall, at least
for the energy containing eddies. If we then choose values for h(O) and 6 to give
a good fit to h(Y) near y = , we find

h(O) = 5.4/8 ; -- " /I -
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The integral* can be evaluated in terms of

J(x) =
k +.

which is tabulated by Goodwin and Staton2 3.

We find, finally, that

p 2.2 (39)

which shows good agreement with the experimental results.

3. COMPRESSIBLE FLOW THEORY

3. 1 The Pressure Disturbance Equation (zero heat transfer)

Since the experimental results of the wall pressure fluctuations by Kistler and
Chen (loc.cit.) at high Mach numbers show only a relatively small divergence from the

linear relation between.--7- and T we might expect that the dominant terms con-
tributing to the wall pressure in incompressible flow also play a dominant role in
compressible flow, Thus, if we neglect the diffusive terms and write our equations in
dimensionless form, we find, following Phillips (loo.cit.), if the mean values of the,

density and viscosity at the wall are constant, that

a
2

uD2p a 2  d~ 7 , ,.

-+ V2P + - A(E,t) (40)
-.2 DO dx 2  •x 2  PW

p.
where p

tu!P

PwU

_-(w)

Sk3 ek

+h÷•) K=()1-2••) (t•J•)*(i•j(/
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A~t) uu (41)

D B
and - = - + U 1,

where (11 U1 (x2 )

The speed of sound, a is also a function of x, only,

As Phillips remarks, the left hand side of this equation neglects convection and
scattering of the sound by the turbulence and by fluctuations In the speed of sound.
The diffusive terms can be added to A(E,t) and hence, by using (40) as the basic

equation defining pressure fluctuations in a turbulent compressible flow, there is
liLle loss of generality. We see that the effect of including fluctuations in density
(sound waves) has given rise to additional terms as compared with the equation in
incompressible flow. Since diffusive effects, however, hava been. neglected, we find
that the pressure fluctuations are the result of the fluctuating vorticity and sound
modes, where in general the vorticity mode is the larger. If this were not so, it

would imply that the mean properties of the turbulence in a compressible shear flow
could not be derived from a transformation of the results in incompressible flow.
But both Morkovin"1 and Coles26 have shown that this scaling up of the incompressible
data gives fair agreement with the limited measurements made in supersonic flows. If
the sound mode could be ignored, we could write (40) in the form

v~p (40a)

and its solution would then follow on the lines given above for incompressible flow.

However, at this stage, we will continue to retain (40) in full and investigate more
fully the terms giving rise to the sound mode,

The equation for the Fourier coefficient dŽ&, as defined in (22), is, if

42a2
ak2

ddee + co dZ1 2 u + k d- (42)
dx2  LP2 Pw

sinco ae/a = p0 /lp for conostant mean pressure over the entire shear layer, and primes

If, following Phillips (lo0.cit.), the first derivative is eliminated by the use of

the now dependent variale

a

then.
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2 r
- •U + u 2k1 ) + a" =(43)

with t(O'•:,w) = d&(O;X,w) . This equation should be compared with its corresponding
eiuation in incompressible flow (23), which is obtained from (43), when a aw OD

For the case of zero heat transfer, we have

a2 = a• • 2U2
2

atr = O;

and
a" 1 v u,( aL U

4 2 \Y"'U a u 1  (44)

It can therefore be seen that for smell wave numbers, a"/a is a not unimportant ternm
in the left hand side of (43). However, except at the wall, it is small compared with
the source terms on the right hand side and so in general can be neglected.

Now in his analysis Phillips chose non-dimensional co-ordinates such that the width
of the shear layer was unity and the Mach number of the external flow was very high.
He found, finally, the radiation of sound from the shear layer by a solution which
neglected terms of order 1/M•

In our problem we have chosen boundary layer co-ordinates such that U, - U, as
x2- w . We cannot strictly estimate the radiation of sound from the boundary layer
since we cannot enter the far field outside the boundary layer. However we can
estimate the disturbance in the outer region of the layer if we find the solution to
(43) satisfying appropriate boundary conditions. By neglecting diffusive effects, our
boundary conditions are

d-V(O) = 1(O) = 0 (45)

and either d(4') = =(eo) 0
r e(46)or 8 - ei•XX xg 01n

where we differentiate between the cases of zero disturbance outside the boundary layer
and that of outward propagating waves,

In our problem it is too restrictive to find only a solution for large values of
M. and it is desirable to choose some other parameter which defines the flow. In
(43) we noted the existence of the term u2/a 2  and we find that for zero heat transfer

-' =«fM2< I

(2
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for all M.* . It follows that a solution to (43) is required for large values of the
parameter X = aw/uý , (This is true also for most cases with heat transfer).

Let us now define the new independent variable

u2
Y X X2 a.2

Then with

& +- -- __ + Mu,MY) (47)

1* 2

where K = a/a, , we find (43) becomes

dy2 ,y)t H) (48)

where

H(y) "

and the term in X4 in H(y) is absorbed finally in the velocity derivatives and wave
number terms.

If we now follow the arguments used in the incompressible flow theory, we see that
H(y) will be negligible over the outer three quarters of the boundary layer. Also,
in this same region, ' y/I will be small, owing to the small gradients in the mean
velocity. Thus a good approximation to (43) in the outer region of the boundary layer
will be to replace U1 by U00 , I by a, /aW and then

LX2 + kIM4 2 j - 0 1 (49)

But if the convection speed of the turbulence is U0 , the frequency w is given by

C- =-k Ue (50)

*If, following Coles, we put

Of 21
- - M (1 - Kcficfi

for the case of zero heat transfer, where K • 153 , we see that

Tu2 5oft
-- • ~~as M-o" c

a2 2(1 - KCfl a
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and (49) becomes

d2toF~k2a,2 (u \ 5  a,'
d2  2M~2 ti (51)

having solutionn ni' the form

exp(± JY) for QL > 0
and fr q<0 }(52)
where q (C) X2 k 1 - (83)

The interpretaton nof the ssoord' type nf solpltion was given hy Phillips, who showed
that it is equivalent to 1,~ward and outward propagating eddy Ma9p waves respectively
having wave numbers such that, with k,=k cosO

Hence eddy Mach waves are generated over wave numbers in the plane for which

77 - O < 0< 77+ Om and i%<0<O

where

009s1 (( -UOUm)m

and when U,/UJ, 0.6 outward radiating Macli.waves occur when M exceeds 1.25
The region near Wj~ 0 is excluded since eddies beyond a certain size do not exist,

Although these considerations give us some idea of the solution to (48), they
really only help us define conditions which have to he satisfied near the cuter edge
of the boundary layer. It is shown, therefore, that the first boundary condition of
(46) is applicable for wave numbers defined by

T-Om .0<O ad 7 Om a <0<27-Om

while the second boundary condition applies for all other values of

In regions closer to the wall, q(y) changes sign when*

(Y-1/
2g 

11AU", + U'
2

-2 U 2  + k2 OUc - U1 )2  (56)

The terms involving a"/a are included for convenience only.
As already stated, it is preferahle to putf thpee nn the richt hand side of (4R) and
to regard them as source terms.
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and this occurs at the wall when

+ moo

Hence for YT 1.4 and U./Um = 0.8 to 0.7, this limiting value of M, ranges from
1.5 to 1.8 approximately, provided that the bracket term is 0(1). At low supersonic
Mach numbers there still exists an extensive region of the boundary layer where the
flow is subsonic relative to the speed of sound at the wall, even though the local
flow is partly supersonic, and eddy Mach waves do not exist. At higher Mach numbers.
as shown by Kistler and Chen, the convection velocity is supersonic relative to the
speed of sound at the wall and at each region distance y from the wall, there is a
range of wave numbers from which eddy Mach waves are generated. The remaining wave
numbers in the turbulence produce disturbances near the wall of the exponential type,
just as in incompressible flow. The condition for the generation of eddy Mach waves is

Ico~ so >(a Kr)(58)

(UO - U1 )

Even so except at very high Mach numbers, there is a large range of wave numbers for
which the effective speed of the disturbances is subsonic with respect to the wall.

3.2 The Solution of the Pressure Equation

We have shown above that the pressure disturbance equation can be written in the
form

d2ý
y- x-2q(y)t =H(y) (48)

dyg 48

where q(y) and its derivatives are continuous functions of y. This equation has a
transition point at Y= y0 , where q(y 0 ) = 0 If y =Y when w + Uk = 0 where
co = -U k1 , then q(y) will be positive in the range y, < y < Y , provided that

T yy /a-a ,can be neglected. If a second transition point occurs at y = y, where
q(Y1 ) = 0 and y, > Y, , then q(y) will be positive in the range yo < y < y1 , but
q(y) will be negative for 0 < y < yo and y > y •

Case I q(y) > 0 0 '< y '< Y2

Since X is a large parameter, we can find an asymptotic' solution to (48). On
neglecting terms of 0(1/\) and inserting the boundary condition dt/dy = 0 at
y 0 we find

t~y 2A' /CY + 1 H(YI) n(kfy 'd
= T cosh(J q'2Y) 1~ qI) sinhY k)d~ (59)

JO
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where A' is a constant given by

2A1
(0) : dw() =(60)

but can only be determined when some other boundary condition is inserted, for
instance at y = y2 . If we argue, however, that the region surrounding y = Y
provides the dominant contribution to the disturbance at the wall and for y > y2
t(Y) << C(0) we find that

Y,

. I H(y•)
ex(O 'Pd y (61)

q(0) 7 4J
which reduces to (26) in incompressible flow when Xq and and

Case II q < 0 y, < y Co

If a second transition point occurs at y yj then q(y,) 0 and q is
negative in the region yl < y <o

Let us put
Sq*(y) --- q(y)

(U - (62)
U~ w

then a solution is required of

d 2td7 + X•2q,(y)• = H(y) (62)

where q*(y) > 0 in' y, < y < co and q*(y 1 ) 0

Near y y, we have

q. q.Y(y 1)(y yI) (64)

where q(*(y.) > 0

If we introduce the new dependent variable f(•) where

--- (65)

Sdy
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and = q) / (66)

then from (63)

dQ• H
-r - 2 t small terms (67)

with [()jq*dyP . (68)

The range of • is 0 < < o ,and we take

- (69)

If we assume that only outgoing Mach waves exist for y >> Yl then

(y) exp iXf V/q*dy (70)

The solution of the homogeneous part of (67) can be written down in terms of the
functions

where L*j = • / and 0 < w and the solution for ý(y) , which can,be con-
tinued analytically into the region y 4 Yl , follows apart from one undetermined
constant.

Case III Q > 0 Yo < Y < Y,

As stated above, the solution obtained in the region y, < y < co can be continued
analytically into the region y 0 < y < y, and thereforie involves terms of the form

AI/311(/) and 01/KI(A)

3 3

where /U =•t3/2

and t = dy

The solution for 4(y) is therefore given in this region also, apart from one
undetermined constant, the same constant as in Case II above. This solution cannot,
however, be extended to values of y near y, where q(yo) = 0 . A solution can,
however, be found around y = y0 involving the functions
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77 11311(71) and 771 /KI (,I)
3 3

where 7)= •Xs
1  2 /

and s = dy

The solution contains two undetermined constants.

Case IV q < 0 0 < y < Yo

The solution obtained in III can be continued analytically into the region
0 < y < yo , and hence it is given apart from the two constants. Boundary conditions
at the wall provide one relation and two more relations are obtained by matching the
solutions obtained in III at some convenient- value of y in y0 < Y < Y, . The three
unknown constants can now be evaluated and the solution for ý(y) throughout the
entire boundary layer has been obtained, and in particular the value at the wall.
(Pull details of this solution are given in a separate paper which will be published
shortly).

First of all let us find the changes that result in da(O) as a result, of com-
pressibility effects at low supersonic and high subsonic Mach numbers and these can be
demonstrated on evaluation of (61).

If we assume, as in incompressible flow,,that the dominant contribution to H(y)
arises from the (M - T) term then

where = - U1  q(y) k2 aw (•+ k)
-... dx2 u2  12

S- dIe ,o_ ..

and dw(0) 2- " a dI - (dz2)dy (72)

COU
number, and these can be obtained from their so-called equivalent incompressible
counterparts using Coles' transformation formulae.
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If quantities with a bar represent incompressible values

X• = d2(73)

where iA is the sub-layer viscosity which, for zero heat transfer and y 1.4 , is
evaluated at the temperature T. given by

TO/~l~W (1+ o.1 iM)
(1 + o.2MA)

Also U1  (75)

where Ot is the non-dimensional mean velocity in incompressible flow and U,,
is its corresponding value in compressible flow. If further we assume that the
relation between T and U, is given by the Crocco energy integral, we can perform
the integration in (73) and so find the relation between x2 and 72 in the form

2

X a d L. 1IdU

pa d2 'Y- ," 1 K K

/ (77)

+ t

for the case of zero ieat transfer.

ta we assume that o changes with compressibility in the same way as the mean
flow*

*Th~is relation between ug and T: differs from that Used by Morkovin (leo~oit.)

but neither relation is in good agreement with the available experimental data. All
that can be said of (79) is that it qualitatively has the right trend with increase
In Mach number.
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and a similar relation is assumed to exist between the Fourier coefficients such that

dzl(X2) = UP2(%2)4 (79)

After some reduction we find, on substituting (78), (77) and (79) into (72), that

21ki~ -kf(1!)
= j.. o X din e 2 (80)J-ý Y X(! 2)

where
2

r CDM2+ k1ul~

+ ~ M -

2
and

X2
/ .

Ti .-1 r 2L

kf(i ,) k X(X7 ) -. U (1 + 2

0

The spectrum function is therefore given by

SoIY e-kf(y) e
ýk ,, ~~dy 420,ZýK-&

jo 7. T"

S-k(f(y.m•-f(y))j '(Y + z)e e 8(1

X t(y + z)1 ((: '

X(y + Z)2 ýT(y + Z)• z(1
l T k

where the upper limit in (80) has been replaced by infinity. We see that (81) is
identical with (34), apart from the term in A/j.p T/Tw, kX(y) in place of k ,
and kf(y) in place of ky
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A rough approximation to (81) is found by replacing f(y) with fy and X(y)
with R , where I and R are independent of y . We then find that the integrals
have the same form as in incompressible flow and have the values obtained previously.
Hence, on reference to (35) and (36), we find

1.68k •l'h'(O /

e12k2  ( 2
11(0;x) 77k +\•w/ e-k (82.)

where the integration over all frequencies has been performed on the assumption that,

except at very small wave numbers,

X(y) Pd X N X(x2 at U1 = U0 ) 1; h(y) = h(O)e .

The integration over all wave numbers k, and k 3 can next be obtained and leads to

p I ( h2 (O) L(Mc) (83)

where

1 kle-k 2e

L(M,) (84)

which can be evaluated in terms of the function tabulated by Goodwin and Staten
(ioc.cit.).

All that remains is to choose suitable values fcr h(O) , /31 and f . If we
follow the arguments used in the incompressible flow analysis, we must choose h(O)
such that h(y) is a good approximation to its corresponding value in compressible
flow near x 2 = 81

It follows that some adjustment to ,I8 with Mach number is necessary and we put
/31= 1,

2eB~
h(o) = , -,- (85)

21

with



26

1 0.6 2 1 U2,

/ 1 U.2(86)

21

and

1 2 (' U \•g/ I_ +

+ - M- ,) K'

kvi + 0 m': ~(8,7)
.1 +] 0. 2M.2

approximately.

If we use the asymptotic expansion for the function J(x) given by Goodwin and
Staton we find

/p--() - 6.3 as M- " CO

Figure 6 shows results for 4p7-0) evaluated from (83), together with (84) to (87),
and the experimental results of Kistler and Chen (loo.ei.t.) and Willmarth, Hodgson
end Mull and Algranti 2 6 at low speeds. As already stated, these theoretical results
should only be applicable foi low supersonic Mach numbers Out it is here that we have
the greatest divergence with the experimental results. There does not appear to be
any Justification for reducing the experimental resqlts of Kistler and Chen, by a
constant factor, but if this is done, they fit both 'the low speed data of other
workers and the theoretical curve throughout the entire range of Mach number.

However on the assumption that the differende between the present theory and
expcriment is real, clearly we must find what is wrong with regard to the theory. It
is difficult to see how it is wrong at low supersonic Mach numbers and high subsonic
Mach numbers, where no eddy Mach waves can exist and where the compressibility effects
on the mean flow field and the turbulence are known to be small.

If we ignore the experimental point of Kistler and Chen at M, = 0.6 , and assume
that at some value of M, above 1.25 a large increase in pressure level occurs as a
result of the generation of eddy Mach waves, then it is surprising that an ever
increasing divergence between our theory and experiment does not exist as M, is
increased. The fact that both sets of results appear to have the same asymptotic
behaviour at high Mach numbers seems to suggest that eddy Mach waves do not contribute
greatly to the wall pressure fluctuations. The significance of this will be explored
in the next section.
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Before closing this section we note that the changes in the frequency spectrum with
increase in Mm will not be large and the peak should occur at near wA/UJ = 0.3 ,
its value in incompressible flow. In fact the results of Kistler and Chen are in good
agreement with the low speed results of Willmarth. Also, the main effects of Mach

number on . appear to be a reduction due to the decrease in Cf with increase in
M, , and an increase due to the shift of the dominant source region nearer to the wall
with increase In M,

3.3 The Pressure Equation at Inigh Mach Numbers

We have shown above that the solution given in (61) is restricted to the case.
q(y) > 0 . If, therefore, a transition point exists between the wall and the station
where U11 UO , we must turn to the solution outlined in Case III above. The solution
follows the approach used by Phillips, although we find it necessary to modify that
treatment when applied to our problem. We will, however, still not consider the full
solution which must include radiation outwaWs, from tOe boundary layer.

The solution to (48) in the region a-iound Y = Yo where q(yo) 0 is found to be

{(Y) ( 31(7)) 0(y) + 7?3Kj(77)/3(y) (88)

where

V,= 'dy for 0

and q(y 0 ) 0 17 3

a(y) = A + q(s)7'3 Kj(fl)ds (89)

P(Y) = - if s ((90)

a rid de( ) H ((

q ndy s2(S 48

and since 4)(s) contains t(y) (88) is an integral equation for t(y).
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Near y y , since s) q/8

s = V,-T-) (y y,)1/

or S gq(yo) 3 (y - yo) ql(yY) (Y - Yo)e,7i/s

corresponding to the + or - signs respectively. However, because we have put

s =seit• q =q*eilT

with

do

where both s* and q* are real and positive.

We also have

where

dy) .! - = .

7* ( xs*a'/ xJ' dy

)fy 0

Hence in the region 0 y y <y

q q*8

17I•(17) =- _*J(*

i77 ?e

and 17K•(17) _ 17,3 - eIH¢ 2(17 ,) + ei~3 (I)1,)

)*/2 ,qd

I0

Hec ntergin0<y4y
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(JI(?*) *+ J_- 17*)

where iei• 1 3 (.) - -
3 *77

sin -
S

Thus the analytical continuation of the function U(y) , in the region 0 • y < Y0  is

U(y) ) JI"(7'),(Y) + e- 
1 3

•7'ji('16')/
3

'(y) (91)

where

a'I) A 2 sinl'xq/a o . (2
3

/3(y) B- ck(s*)V'JI(7r )ds* (93)

with.
H (Y) s _ ]

+qy \B'/S L28* 3  
4\~ /J

If we apply the boundary condition dt/dy at y..= 0 and write subscript w to
denote conditions at the wall, we find, for large values of K, that

37 /

and I

.. ) d6 *(0)t(o) t 'w dw(O) =(95)

X6 4''r n*2 .7"P''~

"" W W 'W'

on using the identity
17

2 sin-3
JA(x)J2(X) + J,.(x)J.z(x) =

3 3 3 3 7rX
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where

(0) B - V J1(77*)dsS

and (96)

a*(0) A A- I q5(s8) 1*3J.ION (')0ds0

It is convenient to approximate to these integrals,by assumi" 4'(•g y'd"•"st"it
k(o) ; then

)a H(yo)

"a*(0) A -' (97)

and

,3* B Oy N(YO) 99)

noting that q(yo) 0 , and that for the value of ?7* given by 1

we must put *(0) = 0 in order to satisfy (94), and then 30(0) is not determined,

But clearly this only arises because the approximation given by (94) is inadequate.

i.e. higher order terms must be retained, and therefore in what follows 74 must be

less than unity,

Now the value of qW. is found from (47) to be

a* kIX2 +
2

w 2

and siflca -UC.1  I~h

q4 >0 for o< <Gm

where
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which shows that at 9 = the speed along the normal to the wave fronts is roughly
equal to the speed of sound of the gas at the wall. Thus the position of the transi-
tion layer at which y = yo , q(yo) = 0 , changes with frequency and coincides with"
the wall when q• = 0. In the range 0 < < q, < 0 , while in the range
8m <9< <7/2 . qw > 0. For the latter region we can make use of the solution
obtained in (60)

or ~dak~o) 2V*~u< <or 2 < - (60)

The value of t. when qw 0 is found from (91) and is.

7T2
3  B

dco(0) - - = 8m (29)

Similarly, from (95)

(3/2X) /3(0)

qlW¾ 1w'~ J.2(77W)
3

So far we have applied only the boundary condition thatthe normal pressure
gradient vanishes at the wall when diffusive effects can be neglected. However one
further condition is required in order to determine the constants in the formulae for
•(0) . This further boundary condition results from the disturbance level near or
beyond the outer edge of the boundary layer. If we assume that the bulk of the pressure
disturbance near the wall arises from the region around y = Y , it would seem not
unreasonable to assume that the level of the pressure fluctuations near y = Y.
Where y, > Y and q(y,) = 0 , must be very much smaller than at the wall, in spite
of the fact that radiation outwards is taking place, As already stated, the proper,
boundary conditions at the edge of the boundary layer can only be applied to the region
yl < y < co , where, for sufficiently high Mach numbers, there will exist a range of
wave numbers for which q will be negative, However, for our purpose, it will be
sufficient to assume that y0 and y1  are well separated s6 that we can put

0 for y>>Y.

(Of course the radiation outwards can only he determined by proper matching of the
solutions around y Yo and y = y, as previously q.scussed), we therefore find
that a(y) = 0 for y >> Y or from (89)
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Aj ) 77KI (,q) da (101)

Now, for y= 0 we find H(0) = 0 and so, according to the approximations used
above, 4)(0) = 0 at yo = 0 . Hence according to (98)

U 3(0) =B at Yo 0

and from (94) and (97) on putting 7 = 0

A -

or

a() 713K1(7?)ds (102)C

which determines ýw in (99) when 0 Om

For yo 3 0, H(yo) is finite and then making an approximation to A in (97)
we find from (94) that

0. H't•(Y)

,•(0) - ••) ,(103)

33

since JKI(77) d7 W13
C, 2

and therefore we can find from (100) in the range 0 < 0 < OM We note, further,
as stated previously that p*(0) Is undetermined for that value of which makes
the denominator of (103) vanish ana hence we must only use (ius) for rj; < i

approximately.

For other values of 7 it will be sufficient to put B(0) = n , where B is
given by (102).
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The values of the constants are completed by putting in the range 9m < e < 7T/2

A' exp A dy dy (104)

from (59). On collecting our results together we have

1 fW H(Y -•Jo•" dy'• • f

2(y) e X-jJ--q e dy (105)

2 3
ndda;(O) -- ,7)d 0 O @ m 1)013____2____ (y,)

and d~j(0) 0 3< 0~ <(e 0< % (107)

X3  .(Yo)2 q 1

for values of 71 < 1 and by (105) with cq w replaned by qw for higher values of

We can approximate to (106) by putting

?'KI(7) , -e", vwhere 77 X r. dy .

and hence

d-H() B"e dy (106')

3

having a similar form to that given in the range OM < 9 < 7r/2
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The values of q[4 and ql(y,) can be obtained from (47) and if we ignore deriva-
tives of the speed of sound, noting that this is a poor approximationt near y 0
we find,

201ok~j(108)

since U1  1 at y 0
dx,

and qg'(Y) = \ I=-2 lk 1(co + U1kt) 1 (109)

where U1  and I are evaluated at y = yo

In (109) we find, on approximating to q(yo) 0 , that

q'(Yo) = (2 1klk (110)

and from (108)

q[ 2k'klk1i (111) \

Hence, with

H(y) 1 a 21k -dz,

as given by (71), we can find expressions for d , and the corresponding values of
the speotrum functions are

Jk
2
X
2  

I det]1  ay L Haef dz Om <8 <- (112)I jy dz 2

417kX 2  dU, ;5!e"1  dUt 1e e

(O;,c) z (yz;k,zo) ----- dy 7 - dz

I ~Yj dy q' j d 4

Il-- A) /11•\

$ The full expression for Iavl is given by

Iq5I W . ,2k2[1 - -/%2k2 (,-/1)/2X'k 2 ]

but note our previous remarks about the term a"/a
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12.2 32ka (Y;(y' dUk -2
and -l(O-,k.c) ,A)' 0 <9 < (114)1 ,2 ,y 1) 1 F

I ('Y) q 2 ?7; (..a7 -~o

Wi•are throughout (112) to (114) Z = p/pw ; = a/aw , and (114) only applies when

, < I and for larger values of 74 we replace it by (112) with Q, in place of qw"

Now, according to our approximation,

(o + Uk 1)
2 /A 2 - k2X

2

dU
and so at a fixed wave number , dc = -kZ-1 dy at y-- Yo corresponding to

dy
q(yo) = 0 . Thus for 0 < 0 < e5  we find that the integration over frequencies is
given in terms of an integration over y, , provided q* > 0 . However we find that
for small values of 7 the contribution from wave numbers in the range 0 < 9 <
is negligible, while at larger values of 74W the contribution is of the same order as
that for the range 9< < < 7T/2 . Since the contribution from around 9 8m is
finite, we can represent rI(O;k,co) for all 6 by

4k 2,\2  Id U105 J
"12q I dy q-''" d

zdz (115)

On replacing the compressible flow quantities by the Coles' equivalent incompressible
values, we then find, as previously,

__ dUi e-77
r,(0 X,,ei) - . •- - - d3?

- d! 2 K½(116)
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We find, on making similar approx-imations to those used above in evaluating (81), that
the integration over frequency gives

/08\k~h2(0) 1 ~j 2 e. 2k2 (kZ(v ek k 32 (117)

where

(1 + 20~) e--2dc

U2k
2X2  2k

2X2

On approximating to this integral, we find that

P (U) "' 
6,f h2(U) V• idM=) (118)

just as in the previous case (83). Thus, although we have taken account of the con-
tribution due to the eddy Mach waves, we see that, acoording to the approximations
made, they do not contribute more than those eddies which travel at subsonic speeds
relative to the wall.

4. CONCLUSIONS

It has been shown that theory and experiment are in fairly good agreement in the
prediction of wall pressure fluctuations in a turbulent incompressible boundary layer.
On the other hand, theory and experiment, in the case of supersonic flows, show some
divergence, although both appear to tend to a similar asymptotic value and both
demonstrate the presence of eddy Mach waves above a certain Mach number. However the
theory does not show any marked increase in pressure level at the wall due to eddy
Mach waves. In fact, a simple extension to the incompressible flow theory is shown to
give similar results to the more elaborate theory in which eddy Mach waves are approx-
imately taken into account. This result is perhaps not surprising when we note that
the deminant region associated with the pressure at the wall, even in the incompressible
case, is displaced away from the wall and the level of pressure is roughly constant
over an appreciable distance normal to the wall.

It is clear that further experimental results are required to explain the

differences between theory and experiment, as well as to obtain further information
in the case of flows with pressure gradient and with heat transfer.
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tFig.5 Diagrammatic arrangement of big eddies relative to an observer moving with
the flow
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APPENDIX

The velocity'spectrum function for u

In order to obtain numerical values fpr the wall pressure, the following form has
been chosen for the velocity spectrum function in fixed co-ordinates

t'~ 2x2 x I ~Js~ K~,)) (x2 ).1 2(.x2  x1)l1 21,,1k 2

2112 2c~ 1 ~

272U(1 + I'2i

where U. is the convection speed and 12R9 m 12k2 + 12k2 It is assumed that 1
and 1 'are constant, while 12 = , thus an allowance is made for a change in
scale of the turbulence, with increase in distance from the wall.

The integration over all values of w leads to

+ x;:)2 2) 1'.1 12 2x Y-1 202

j(x 4(X 2 + x~l) 772(1 + 22Ký

and its F~ourier transformn, with respect to K 2  gives the two-dimensional wave number
spectrum function

+ xx 2 + X'2;jK,)e 1K 2 dK2

2 2 5-Ix '/X21
4T(x2  1u(x +x) 1i~ 2 k e- e 22

+ 011

which clearly displays qualitatively the correct physical properties across the
boundary layer, even though it fails to demonstrate the true anisotropic wave number
distribution.

S) 1 1 22
Vu2 (X) 4u(x 2 + x')1'(1 + 212I) x/

+ 2 2 (~x2 + x;kO)21
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which is also equal to •D,(x,. X2 + x4: -&)/U,) in agreement with Taylor's hypothesis,

Finally the integration over all k1  gives

2O, x OOx• +x 0,O) (x2)uT2(x 2 + X2)

a form for the velocity nnrrelation which is in fair agreement with experiment over
most of the boundary layer. It is therefore reasonable to expect that our calculated
value for the mean pressure which is based on this assumed form for 02 will be in
fair agreement with its exact value provided very high wave numbers are excluded.
Finally it is worth noting that we have a complete freedom of choice with respect to
the longitudinal and transverse scales, Z1 and 1. respectively, as well as the
convection speed U. , except that in the latter case we have assumed that it is
independent both of the distance from the wall and of the wave number in the turbulence.
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DISCUSSION

G.M. Corcos

Professor Lilley has based much of his talk upon the assumption that the pressure
field was caused primarily by the quasi linear momentum flux which results from the
interaction of the mean stream rate and one turbulent strain rate. He and I have been
having a disagreement on this point which could hardly be more complete or more
friendly. He has advanced many arguments in favor of his hypothesis originally pro-
posed by Vraichan and this is not the place to review each one in detail as I had
originally planned to (slide down). Fortunately the discussion has shifted from the

somewhat speculative plane of the appropriateness of certain modes of things we don' t
know to that of hard facts. By this I mean that the excellent measurements of
Wooldridge and Willmarth allow the direct evaluation of the contribution of this one

inertia term to the pressure field without recourse to models or assumptions. One
then can compare these contributions to the characteristics of the observed pressure
field. Now Professor Lilley has almost done that by trying to fit a pressure-normal
velocity correlation model to these experimental data. This later approach I have not

had time to check in detail, since I only got the report yesterday, But there seem
to be important discrepancies between the model and the measurement near the wall.
If there were not, which is still possible, his computation should agree with a
detailed numerical computation I have performed without a model and therefore without
assumptions, unless I made many numerical mistakes. Briefly the results of these two
computations are different as day and night. Professor Lilley finds that the M-T or
quasi linear term dominates. I find it does not dominate. Professor Lilley finds
that this term makes its contribution around y* 2000 or y/42 I.e, I find it

makes its peak contribution around y = y* = 350- 400 , y/1 .2 In addition I
find that the auto-correlation of the pressure contributed by that spectrum is very
different from the observed correlation - contributing essentially only the very high

frequencies of ,the spectrum. The issue can clearly and relatively easily be resolved.
We shall first compare the model to be used with the data in detail and if they do
agree, then we shall look for numerical mistakes, .I intend to dsecribe briefly this

afternoon how the numerical computation of that contribution is made rd to give a few
details of its results. I would like to note that even if allowance is made for this
rather important assumption with which I disagree, Professor L~lley's talk was

thoroughly enjoyable and his paperwork on compressible flow is quite interesting.

Author's reply

I would disagree that I had based my work primarily on the importance of the mean

shear-turbulence interaction,

JE. Ffowcs Wil•iams

I was particularly interested to hear of Professor Lilley's work on the wall

pressure fluctuations under compressible flow conditions. I would like to ask

Professor Lilley if he has given any thought to ono aspoct of his theory about which
I feel uneasy. That is concerned with the problem of whether or not his assumed model

presents a well posed mathematical problem. The model is that of an infinite plane

supporting a homogeneous boundary layer. The turbulence will generate sound
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and we are interested in that sound. The-situation is such that it gives rise to an
analogue of Okert's paradox for the pressure at any one point is infinite. The
infinity is avoided in Professor Lilley's equations by restricting the analysis to
frequencies given by K1 U . But the total pressure is nevertheless infinite because
finite contributions come from all parts on the plane, i.e. fdS/r 2 is singular. Is
the analysis still valid, even though it has to cope with this infinite contribution?

-. Author's reply

I have looked at this problem and I felt It MM sufficient to assume that the plate
was not necessarily infinite but large. It would appear that the results I have
obtained for the pressure covariance do in fact converge.

Uz



DISTRIBUTION

Copies of AGARD publications may be obtained in the
various countries at the addresses given below.

On peut ae procurer des exemplaires des publications

de l'AGARD aux adresses suivantes.

BELGIUM Centre National d' Etudes et de.Recherches
BELGIQUE A6ronautiques

11, rue d'Egmont, Bruxelles

CANADA Director of Scientific Information Service,
Defense Research Board
Department of National Defense
'A' Building, Ottawa, Ontario

DENMARK Military Research Board
DANEMARK Defense Staff

Kastellet, Copenhagen 0

FRANCE O.NE.R.A. (Direction)
25, Avenue de la-Division Leclero
Chitillon-sous-Bagneux (Seine)

GERMANY Zentralstelle fir Luftfahrt-
ALLEMAUNE dokumentation und -information

MUnchen 27, Maria-Theresia Str. 21
Attn: Dr, t.J. Rautenberg

GREECE Greek National Defense General Staff
ORMCE . B. .0

Athens

ICELAND Director of Aviation
ISLANDE c/o Flugrad

Reykjavik

ITALY Ufficio del Generale Ispettore
ITALIE del 0ehio Aeronautico

Ministero Difesa Aeronautica
Roma

LUXEMBURG Obtainable through delgium
"LUXEMBOURG

NETHERLANDS Netherlands Delegation to AGARD
PAYS BAS Michiel de Ruyterweg 10

Delft



NORWAY Mr. 0. Blichner
NORVEGE Norwegian Defence Research Establishment

Kjeller per billestr6m

PORTUGAL Col. J.A. de Almelda Viama

(Delegado Nacional do 'AGARD')

Direnglo do Servigo de Materialda P.A.
Rua da Escola Politecnica, 42 ,
Lisboa

TURKEY Ministry of National Defence
TURQUIE Ankara

Attn. AGARD National Delegate

UNITED KINGDOM Ministry of Aviation
ROYAUME UNI T. I.L., Room O09A

Pirst Avenue House

.. I ohdob W,. 0

UNITED STATES National Aeronautics and Space Administration
ETATS UNIS (NASA)

1520 H Street, N.W.
Washington 25, D.C.

Printed by Technical Editing and Reproduction Ltd
Jiarford House, 7-9 Charlotte St. London. W. 1.



W Ml

cr~ cl

mr cn ci v
w.CJ



U4444 ) O0
)

k 444

4JJ A

~ GO

0u) .4

4-

~+ 4 -4 -

_~a 4. ) o

.. .. .... . . .. .

4- .. d
0) 4J 4)

~ 44N ~ 44
4) :a .401 *

CS PM)+ 41.

d A2

44p.~1 ~4G0) 44va~

40 4 4-44

A Z
a 434Y

0) ~ ~ p o) '4 'o )0~

4-;, .0 t 4~4443, 44~es

~,i~b W ~ CD



r a 01

m 'R tý " h m t+
kvj I

I0 It ~

@44



,q. 
• 1 •.

~ i ~'1  . i
!I ,-

.'1 P"e

1111 III 11

in! • •i 'I I '

•' .-•I i p• 
,


